Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans
نویسندگان
چکیده
L-Rhamnose is a common component of cell-wall polysaccharides, glycoproteins and some natural products in bacteria and plants, but is rare in fungi and animals. In the present study, we identify and characterize a biosynthetic pathway for dTDP-rhamnose in Caenorhabditis elegans that is highly conserved across nematode species. We show that RML-1 activates glucose 1-phosphate (Glc-1-P) in the presence of either dTTP or UTP to yield dTDP-glucose or UDP-glucose, respectively. RML-2 is a dTDP-glucose 4,6-dehydratase, converting dTDP-glucose into dTDP-4-keto-6-deoxyglucose. Using mass spectrometry and NMR spectroscopy, we demonstrate that coincubation of dTDP-4-keto-6-deoxyglucose with RML-3 (3,5-epimerase) and RML-4 (4-keto-reductase) produces dTDP-rhamnose. RML-4 could only be expressed and purified in an active form through co-expression with a co-regulated protein, RML-5, which forms a complex with RML-4. Analysis of the sugar nucleotide pool in C. elegans established the presence of dTDP-rhamnose in vivo Targeting the expression of the rhamnose biosynthetic genes by RNAi resulted in significant reductions in dTDP-rhamnose, but had no effect on the biosynthesis of a closely related sugar, ascarylose, found in the ascaroside pheromones. Therefore, the rhamnose and ascarylose biosynthetic pathways are distinct. We also show that transcriptional reporters for the rhamnose biosynthetic genes are expressed highly in the embryo, in the hypodermis during molting cycles and in the hypodermal seam cells specifically before the molt to the stress-resistant dauer larval stage. These expression patterns suggest that rhamnose biosynthesis may play an important role in hypodermal development or the production of the cuticle or surface coat during molting.
منابع مشابه
Gene Expression Changes of Caenorhabditis elegans Larvae during Molting and Sleep-Like Lethargus
During their development, Caenorhabditis elegans larvae go through four developmental stages. At the end of each larval stage, nematodes molt. They synthesize a new cuticle and shed the old cuticle. During the molt, larvae display a sleep-like behavior that is called lethargus. We wanted to determine how gene expression changes during the C. elegans molting cycle. We performed transcriptional p...
متن کاملBiological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans.
We have cloned a new gene locus that comprises three genes concerned with the biosynthesis of the serotype c-specific polysaccharide antigen in Streptococcus mutans. The genes encode proteins exhibiting significant homology to the rfbA, rfbB, and rfbD gene products that are involved in the anabolism of dTDP-L-rhamnose from D-glucose-1-phosphate. This anabolism pathway pertains to biosynthesis o...
متن کاملHaloferax volcanii N-Glycosylation: Delineating the Pathway of dTDP-rhamnose Biosynthesis
In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. ...
متن کاملFormation of dTDP-rhamnose is essential for growth of mycobacteria.
It was determined that the dTDP-rhamnose synthesis gene, rmlD, could be inactivated in Mycobacterium smegmatis only in the presence of a rescue plasmid carrying functional rmlD. Hence, dTDP-rhamnose biosynthesis is essential for the growth of mycobacteria and the targeting of dTDP-rhamnose synthesis for new tuberculosis drugs is supported.
متن کاملIdentification and functional characterization of the Lactococcus lactis rfb operon, required for dTDP-rhamnose Biosynthesis.
dTDP-rhamnose is an important precursor of cell wall polysaccharides and rhamnose-containing exopolysaccharides (EPS) in Lactococcus lactis. We cloned the rfbACBD operon from L. lactis MG1363, which comprises four genes involved in dTDP-rhamnose biosynthesis. When expressed in Escherichia coli, the lactococcal rfbACBD genes could sustain heterologous production of the Shigella flexneri O antige...
متن کامل